IREX: Iterative Refinement and Explanation of classification models for tabular datasets

نویسندگان

چکیده

Tabular datasets, collections of rows and columns, are fundamental in data analysis basically all areas research. Self-report questionnaires a very common useful tool for gathering from users, patients, or customers. Often, experts can label each item these as measure given condition behavior, e.g., mental health conditions such depression. Considering this, many artificial intelligence techniques, particularly those related to machine learning, have been proposed analyze the provided by tools. However, self-report be extensive, which often affects quality responses, complicates analysis, renders them more time-consuming. In this paper, software IREX is presented. iteratively refines tabular questionnaires, while providing an explanation classification model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

On the Automated Transformation of Domain Models into Tabular Datasets

We are surrounded by ubiquitous and interconnected software systems which gather valuable data. The analysis of these data, although highly relevant for decision making, cannot be performed directly by business users, as its execution requires very specific technical knowledge in areas such as statistics and data mining. One of the complexity problems faced when constructing an analysis of this...

متن کامل

Adaptive Ensemble and Hybrid Models for Classification of Bioinformatics Datasets

Clinical databases have accumulated large quantities of information about patients and their clinical histories. Data mining is the search for relationships and patterns within this data that could provide useful knowledge for effective decision-making. Classification analysis is one of the widely adopted data mining techniques for healthcare applications to support and improving the quality of...

متن کامل

Iterative Goal Refinement for Robotics

Goal Reasoning (GR) concerns actors that assume the responsibility for dynamically selecting the goals they pursue. Our focus is on modelling an actor’s decision making when they encounter notable events. We model GR as an iterative refinement process, where constraints introduced for each abstraction layer shape the solutions for successive layers. Our model provides a conceptual framework for...

متن کامل

Iterative Refinement for Machine Translation

Existing machine translation decoding algorithms generate translations in a strictly monotonic fashion and never revisit previous decisions. As a result, earlier mistakes cannot be corrected at a later stage. In this paper, we present a translation scheme that starts from an initial guess and then makes iterative improvements that may revisit previous decisions. We parameterize our model as a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SoftwareX

سال: 2023

ISSN: ['2352-7110']

DOI: https://doi.org/10.1016/j.softx.2023.101420